

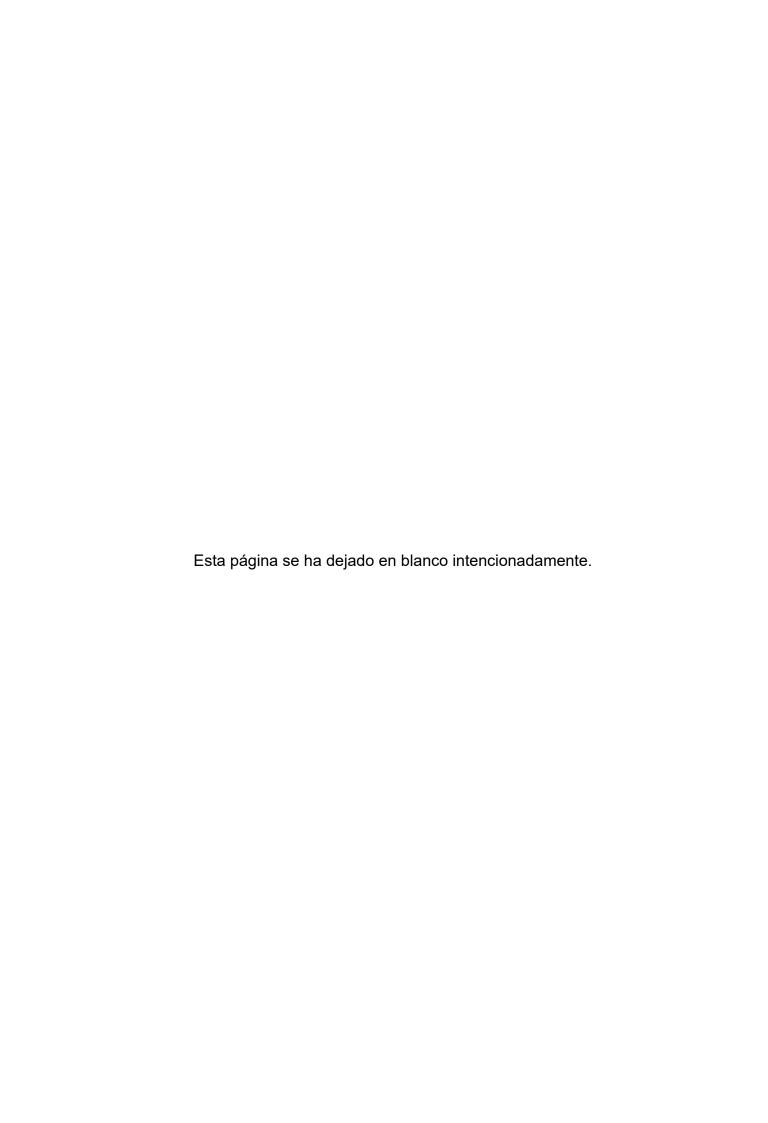
Grupos de válvulas

Válvulas de asiento doble

Lit. Código 200008035-1-ES

Directrices para la instalación de grupos de válvulas y otros tipos de instalaciones

Publicado por Alfa Laval Kolding A/S Albuen 31 DK-6000 Kolding, Dinamarca +45 79 32 22 00


Las instrucciones originales están en inglés

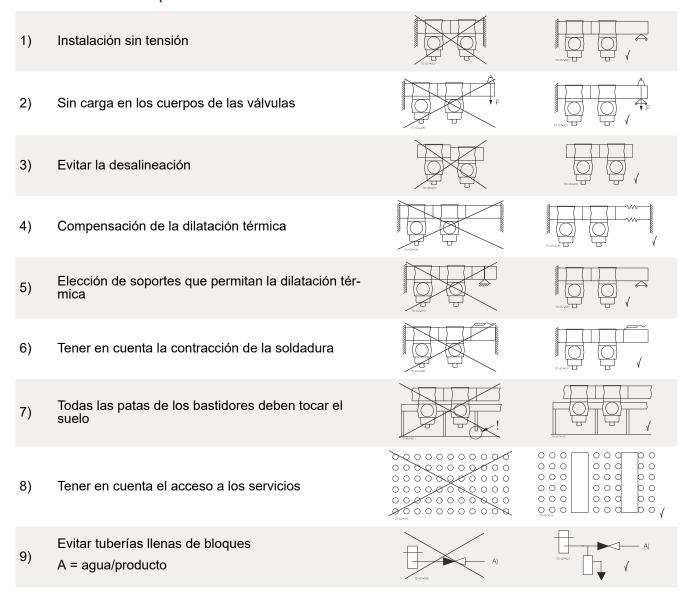
© Alfa Laval 2025-10

This document and its contents are subject to copyrights and other intellectual property rights owned by Alfa Laval AB (publ) or any of its affiliates (jointly "Alfa Laval"). No part of this document may be copied, re-produced or transmitted in any form or by any means, or for any purpose, without Alfa Laval's prior express written permission. Information and services provided in this document are made as a benefit and service to the user, and no representations or warranties are made about the accuracy or suitability of this information and these services for any purpose. All rights are reserved.

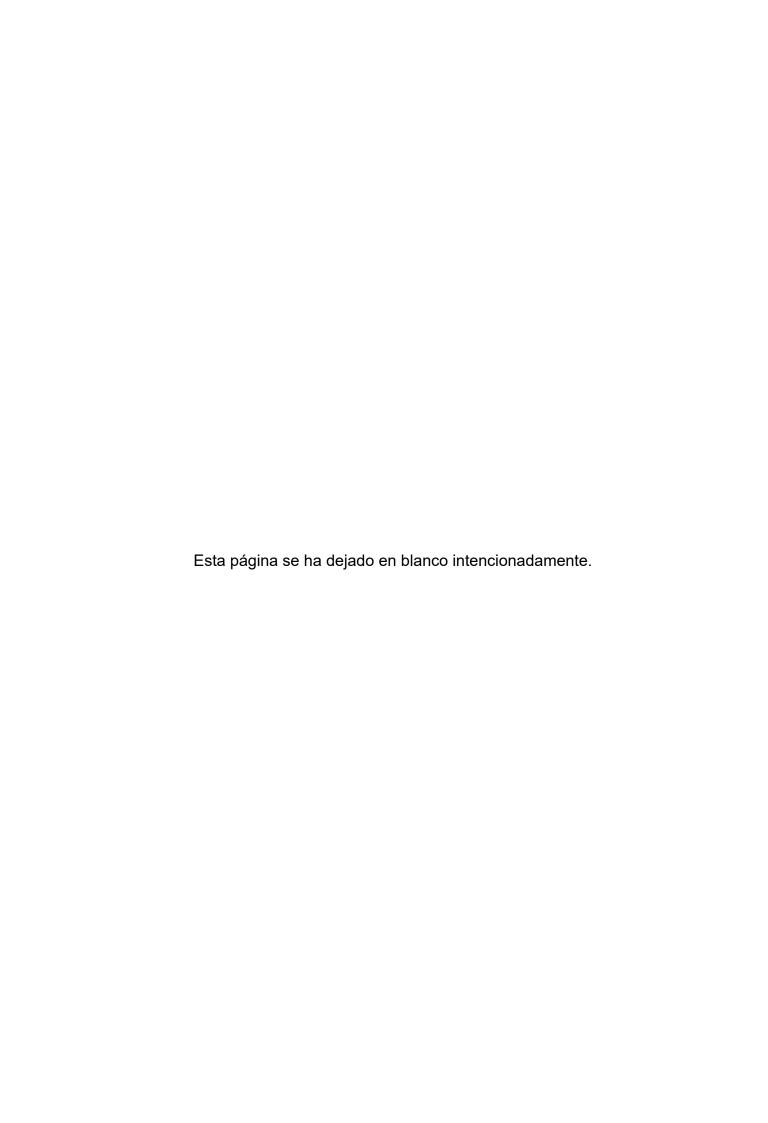
Contenido

1	Introducción							
	1.1	Información importante	5					
	1.2	Lista de comprobación	5					
2	Instalación							
	2.1	Instalación general	7					

1 Introducción


1.1 Información importante

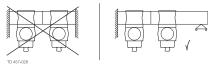
Este manual hace especial hincapié en las prácticas no seguras y otro tipo de información importante.


Este documento debe leerse como una guía a la hora de realizar agrupaciones y otros tipos de instalaciones.

En caso de duda, póngase en contacto con Alfa Laval para que le asesore.

1.2 Lista de comprobación

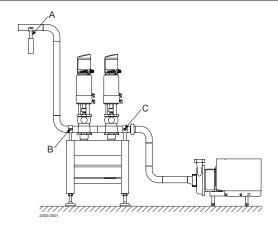
200008035-1-ES 5



2 Instalación

2.1 Instalación general

1 Evite tensiones en el sistema de tuberías al instalar el grupo de válvulas. Asegure que el extremo libre no se dilate.


La tensión puede proceder de la carga, la desalineación o la dilatación térmica y puede inducirse tanto vertical como horizontalmente.

2 Es importante que no se aplique ninguna carga directamente sobre los cuerpos de las válvulas.

En instalaciones con más niveles la tubería superior debe descansar en un soporte abierto sobre el puente superior permitiendo que la dilatación térmica se desplace hacia arriba.

La tubería inferior debe apoyarse para evitar que la tensión de carga de la tubería vertical provoque tensiones.

A: Soporte de tubería abierta.

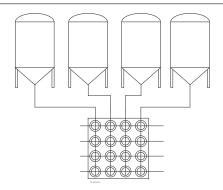
B: Soporte de tubería fija o suelta.

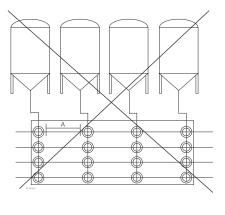
C: Soporte de tubería fija o suelta.

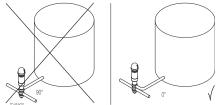
Además de estar bien apoyada, la zona sobre la que descansan las válvulas debe ser recta y uniforme para permitir el movimiento térmico.

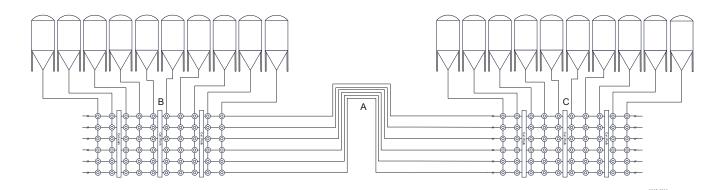
La carga del grupo no puede provocar la deflexión del bastidor. Los soportes de las tuberías deben colocarse a intervalos para evitar la deflexión.

200008035-1-ES



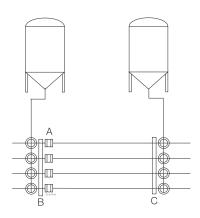

Es importante compensar la dilatación térmica, ya que puede provocar el mal funcionamiento de las válvulas.


Las tuberías deben ser lo más cortas posible, ya que las largas presentan un riesgo potencial de problemas de dilatación térmica.


El amplio rango de temperaturas en las líneas paralelas de un grupo provoca una dilatación térmica desigual de una línea a otra. Por tanto, el grupo debe diseñarse lo más compacto posible.

Deben evitarse las tuberías distanciadoras en las líneas del grupo, ya que esto aumenta la longitud de la tubería y, con la combinación de tuberías calientes y frías, las dilataciones térmicas pueden causar fuerzas tremendas en el cuerpo de la válvula individual.

Compensación mediante codos en U

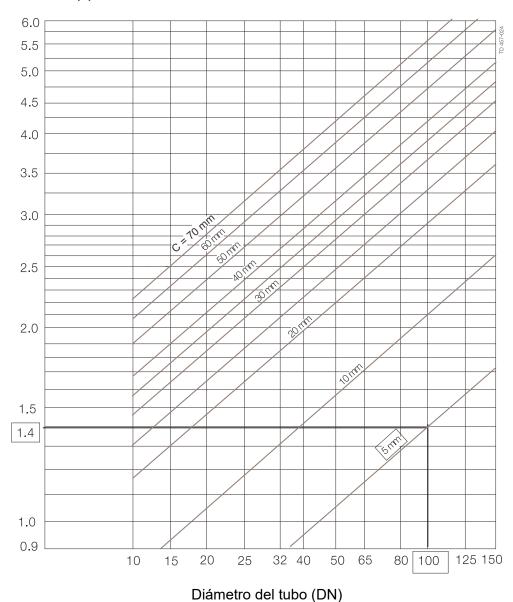

Soporte fijo

Soporte fijo

Si no se pueden evitar las tuberías largas, hay que introducir compensaciones. Los codos en U son la forma más sencilla y rentable de dividir las tuberías en tramos cortos. Estos absorberán la dilatación térmica.

Si el espacio no lo permite, se pueden insertar compensadores como se muestra. Para el número y las dimensiones, consulte la documentación del proveedor.

La dilatación térmica debe poder moverse sin obstáculos, pero a partir de puntos predeterminados del sistema. Estos puntos se denominan puntos fijos. Un punto fijo mantiene los tuberías en su posición independientemente de la temperatura. Se permite que la dilatación térmica se aleje del punto fijo hacia una zona más flexible (compensación).


A: Compensación mediante compensador de fuelle de goma

B: Punto fijo (rígido)

C: Punto fijo (rígido)

Diagrama de dilatación térmica (L)

Longitud mínima de curvado del tubo (m)

C = Dilatación

Por ejemplo: Tubo DN100, dilatación = 5,1 ~

 $5 \text{ mm} \Rightarrow L = 1.4 \text{ m}$

Dilatación térmica en tubos rectos de acero inoxidable

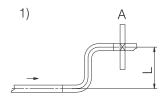
Aumento de la temperatura, °C	5	10	15	20	25	30	35	40	45	50	55	60
Dilatación térmica en mm por 10 m	0,9	1,7	2,6	3,4	4,3	5.1	6,0	6,8	7,7	8,5	9,4	10.2

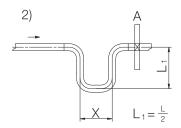
Aumento de la temperatura, °C	65	70	75	80	85	90	95	100	105	110	115	120
Dilatación térmica en mm por 10 m	11,1	11,9	12,8	13,6	14,5	15,3	16,2	17,0	17,9	18,7	19,6	20,4

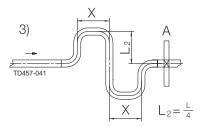
10 200008035-1-ES

Tenga en cuenta que algunos tipos de compensadores necesitan puntos de fijación especialmente diseñados. Consulte los manuales de los compensadores específicos.

Compensación mediante codos.

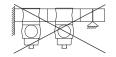

Estos codos varían de forma en función del espacio disponible y la demanda.

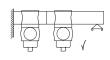

"L" (o L1 o L2 respectivamente) debe ser mín. 3 x D. "X" debe ser como mínimo 6 x D, pero se recomienda que "L" (o L1 o L2 respectivamente) sea más larga que "X".


Hay que centrarse principalmente en:

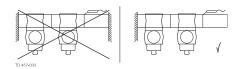
- 1. Longitud de dilatación térmica a compensar (mismo sentido que las flechas anteriores). La dilatación térmica puede consultarse en la tabla "Dilatación térmica en tubos rectos de acero inoxidable" o calcularse mediante la siguiente fórmula: Dilatación térmica = Aumento de la temperatura x 17 x 10⁻⁶ x longitud de la tubería real entre puntos fijos.
- 2. L es la longitud necesaria para obtener la dilatación térmica generada sin dañar la tubería y se puede encontrar en la curva de la página siguiente.

Los codos utilizados para la compensación térmica deben ser codos de 90 grados.

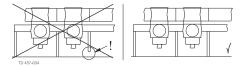


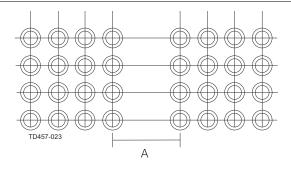

Soporte fijo A:

Soportes para dilatación térmica

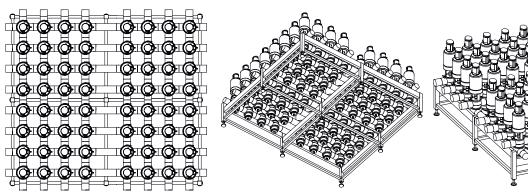

Utilice principalmente soportes de tubería sueltos y colóquelos únicamente en la dirección de la tubería más larga (dirección térmica). Si se necesitan soportes en la otra dirección (para eliminar las cargas de los equipos circundantes), hágalos como soportes que puedan deslizarse sobre el bastidor.

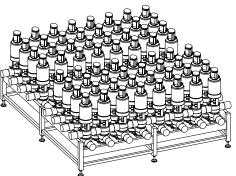
Asegúrese de que la planta circundante está preparada para absorber la dilatación térmica del grupo. En el ejemplo mostrado en el paso 2 en la página 7, uno de los dos soportes mostrados en el grupo de válvulas debe estar fijo y el otro suelto. Si este grupo de válvulas hubiera sido más largo pero con el mismo entorno se recomienda hacer una fila de soportes fijos en el centro del grupo y los demás sueltos.




6 Tenga en cuenta la contracción de la soldadura.

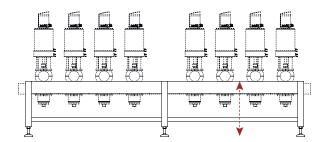
7 Todas las patas deben tocar el suelo en todo momento y las contratuercas deben estar apretadas. Esto es para evitar la posible deformación del grupo de válvulas debido a la deflexión causada porque el bastidor no está bien sostenido.

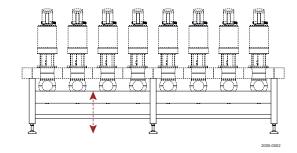



8 En grandes grupos de válvulas, se recomienda el acceso de servicio después de cada 4 filas como máximo. Las vías de acceso de servicio deben tener una anchura máxima de 500 mm.

A: Acceso al servicio

9 Punto de apoyo mínimo debajo del colector de válvulas, debe haber uno al menos cada 4 filas y cada 4 líneas.

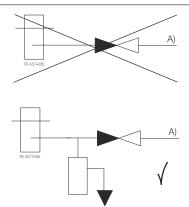


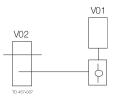


2005-0003

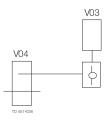
10 El bastidor debe ser lo suficientemente resistente como para soportar el grupo lleno de líquido y, como mínimo, a una persona de pie sobre el grupo, sin desviarse.

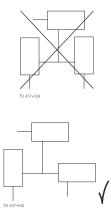
Desviación máxima de la viga: 1 mm a lo largo o ancho del grupo.




200008035-1-ES 13 (11)

Al construir un sistema de tuberías, hay que tener en cuenta que el líquido no se puede comprimir.


Por lo tanto, debe evitarse el bloqueo de las tuberías, ya que la constricción del líquido puede provocar el mal funcionamiento de las válvulas. Del mismo modo, el aumento de la presión hidráulica como resultado del aumento de la temperatura, combinado con una tubería llena de bloques, puede causar problemas si no se tiene en cuenta en el diseño.


A = Agua/Producto

Abrir V01 antes de V02 Cerrar V02 antes que V01

Abrir V03 antes de V04 Cerrar V04 antes que V03

