

Alfa Laval Válvula CO2 autolimpiante SB

Válvulas de control / comprobación

Introducción

La válvula de CO₂ autolimpiante Alfa Laval SB es una combinación de válvula de suministro y venteo de gas para controlar el flujo de dióxido de carbono en sistemas de tanques y otras aplicaciones con el fin de ventilar y/o presurizar un depósito. Totalmente limpiable y autodrenante, esta válvula higiénica ofrece una gestión del gas segura, fiable y rentable.

Aplicación

Esta válvula de gestión de gas está diseñada para ventilar y/o presurizar depósitos utilizados en aplicaciones higiénicas, principalmente en industrias cerveceras.

Ventajas

- Diseño rentable e higiénico
- Funcionamiento seguro y fiable
- Riesgo minimizado de sobrepresión y subpresión
- Autolimpieza y autodrenaje
- Instalación sencilla

Principios de funcionamiento

La válvula de CO₂ autolimpiante SB de Alfa Laval utiliza un muelle de acero inoxidable para forzar la apertura del cuerpo interno de la válvula de polipropileno, lo que permite el paso de todo el flujo de gas a través de la válvula en ambas direcciones. La introducción de líquido CIP a través de una abertura especial perforada en el cuerpo de la válvula en dirección contraria a la fuerza del muelle empuja el cuerpo interno de la válvula a la posición de cierre y garantiza la limpieza de todas las piezas de la válvula. El caudal CIP es de aproximadamente 800-900 l/h, dependiendo del tamaño de la válvula.

Diseño estándar

La válvula de CO_2 autolimpiante SB consiste en una carcasa de válvula compuesta por dos partes unidas por una conexión roscada. Dentro están el cuerpo de la válvula y un muelle para mantener el cuerpo en posición abierta. Una abertura especial perforada en el cuerpo de la válvula garantiza la limpieza interna de la válvula durante la limpieza in situ (CIP).

Colocada normalmente como parte integrada de la tubería de gas/CIP en la placa superior, la válvula puede montarse con un ángulo de 45° (como máximo) respecto a la posición vertical ideal.

Válvula CO2 autolimpiante SB Página 2/3

DATOS TÉCNICOS

Caudal máximo de gas (en ambas direcciones) a una ΔP máx. de 0,1 bar

Tamaño	Caudal (m³/h)		
1"/DN25	25		
1½"/DN40	50		
2"/DN50	150		
2½"/DN65	250		
3"/DN80	450		
4"/DN100	600		

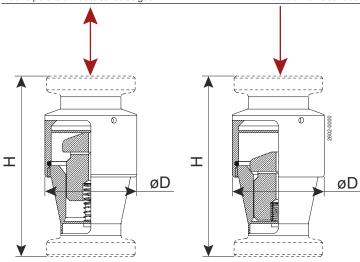
DATOS FÍSICOS

Materiales

Piezas de acero:	EN 1.4404 (AISI 316L) con certificado 3.1
Juntas bañadas por producto:	EPDM
Polímeros bañados por producto:	Polipropileno

Conexiones

Extremo de soldadura de acuerdo con DIN 11850 Extremo de soldadura de acuerdo con ISO 2037


Uniones DIN 11851

Piezas de unión higiénicas DIN 11853

Casquillo de abrazaderas ISO 2852

Dimensiones (mm)

Abierta para la entrada/salida de gas Parcialmente cerrada durante el flujo de CIP

	25/DN25	38/DN40	51/DN50	63,5/DN65	76,1/DN80	101,6/DN100
	Н					
Extremo de soldadura - DIN 11850	78	86	113	133	165	165
Extremo de soldadura - ISO 2037	78	86	113	133	165	165
Pieza macho DIN - DIN 11851	122	130	159	183	215	225
Casquillo de abrazadera - ISO 2852	130	137	164	184	216	216
Pieza macho higiénica DIN - DIN 11853	130	148	175	205	249	265
Extremo soldado/macho DIN - DIN11851 / DIN11850	100	108	136	158	190	195
Casquillo de abrazadera/extremo soldado: ISO2852 / ISO2037	104	112	139	159	191	191
Extremo soldado/higiénico: DIN11853 / DIN11850	104	117	144	169	207	215
				øD		
	49	64	81	106	130	159

álvula CO2 autolimpiante SB	Página 3/3
his document and its contents are subject to copyrights and other intellectual property rights owned by Alfa Laval AB (publ) or any of its affiliates (jointly "Alfa Laval"). No part of this docur	ment may be
opied, re-produced or transmitted in any form or by any means, or for any purpose, without Alfa Laval's prior express written permission. Information and services provided in this document enefit and service to the user, and no representations or warranties are made about the accuracy or suitability of this information and these services for any purpose. All rights are reserved.	t are made as a